REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

30 July 2002 Final Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Adaptive Finite Element Methods for Rotary Wing Aerodynamics N68171-01-M-5866

6. AUTHOR(S)

Carlo L. Bottasso, Stefano Micheletti, Riccardo Sacco

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Politecnico di Milano, Milano, Italy

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Naval Regional Contracting Center, Detachment London, Block 2, Wing 11, DoE
Complex, Eastcote Road, Ruislip, Middlesex, UK, HA4 8BS R&D 8928-AN-01S

11. SUPPLEMENTARY NOTES

Conference Programme and Book of Abstracts (Preconference), First International Conference 17-20 June 2002, London, United
Kingdom, 157 pages.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution authorized for public release.

ABSTRACT (Maximum 200 words)

We report on the research activity developed under the present contract in the field of anisotropic mesh adaption and error
estimation. With respect to the former problem, we describe a method for the insertion of anisotropic mesh layers in general
tetrahedral grids. For a-posteriori error estimation, we describe an implementation of a recovery-based estimator and its
extension to anisotropic metric-based adaption strategies. Selected examples illustrate the characteristics of the proposed
procedures. We conclude by commenting on the results of the research activity and by discussing possible future work in the
same field.

20021202 022

14. SUBJECT TERMS 15. NUMBER OF PAGES

US Naval Research, Italy, Rotorcraft aerodynamics, Finite elements, adaptivity

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

Adaptive Finite Element Methods for Rotary
Wing Aerodynamics

Carlo L. Bottasso (PI), Stefano Micheletti, Riccardo Sacco

Politecnico di Milano, Milano, Italy

Contract Number N68171-01-M-5866
R¥D TA28-AN-0IS

Final Report

DISTRIBUTION STATEMENT A
Apprpved for Public Release
Distribution Unlimited

The Research reported in this document has been made possible through
the support and sponsorship of the U.S. Government through its European
Research Office of the U.S. Army. This report is intended only for the
internal management use of the Contractor and U.S. Government.

A0 F03-01-0307]

CONTENTS

Abstract

Key Words

1. Introduction

2. Procedures for Anisotropic Mesh Adaption

2.1. Introduction and Motivation

2.2. Solid Modeling and Terminology

2.3. Meshing of Internal Features

2.4. Boundary Layer Meshing Algorithm

2.5. Mesh Motion Algorithm

2.6. Implementational Issues

2.7. Numerical Examples

3. Procedures for Anisotropic Error Estimation

3.1. Introduction and Motivation

3.2. An Implementation of the ZZ Estimator for the Compressible
Euler and Navier-Stokes Equations

3.3. An Anisotropic Recovery-Based A-Posteriori Error Estimator

4. Conclusions

References

Figures

ABSTRACT

We report on the research activity developed under the present contract
in the field of anisotropic mesh adaption and error estimation. With respect
to the former problem, we describe a method for the insertion of anisotropic
mesh layers in general tetrahedral grids. For a-posteriori error estimation, we
describe an implementation of a recovery-based estimator and its extention
to anisotropic metric-based adaption strategies. Selected examples illustrate
the characteristics of the proposed procedures. We conclude by commenting
on the results of the research activity and by discussing possible future work
in the same field.

KEY WORDS

Finite elements, adaptivity, anisotropic meshes, unstructured tetrahedral
and hybrid grids, a-posteriori error estimation, recovery-based error estima-
tion, metric-based grid adaption.

1. INTRODUCTION

In this report we describe the work we have performed with the support
of the U.S. Army Research Office through its European Office in London
under a contract with the Politecnico di Milano. The work here described
aims at investigating promising solution procedures for the anisotropic mesh
adaptive analysis of PDE’s, with particular reference to the compressible
Euler and Navier-Stokes equations.

Indeed, solution features in many different branches of computational me-
chanics are associated with strong directionality. In the area of external fluid
dynamics, for example, we can cite the case of rotor aerodynamics as a typi-
cal situation where the anisotropy of the solution plays a very important role
and poses serious limitations to the effectiveness of isotropic mesh methods.
For example, when refining shocks or pressure signals in high speed impul-
sive noise analysis, it would be extremely desirable to have the ability to
generate elements that are highly stretched in the direction of the shock
surface. In the tracking of vortices, gradients are much higher in the radial
direction so that highly stretched elements in the direction of the vortex
itself are highly desirable. On the contrary, isotropic mesh refinements are
inefficient, in the sense that they tend to generate too many grid points,
most of them bearing no practical utility. Since computer resources are
always limited and since three dimensional problems are always extremely
demanding in terms of computing time and memory, the lack of efficiency
in this sense seriously undermines the ability of such isotropic processes to
demonstrate grid independent results.

The work is here organized in two main sections. Section 2 discusses the
mesh modification procedures that are used for inserting layers of anisotropic
elements into three-dimensional grids. The methodologies here illustrated
produce anisotropic grids of excellent quality by carefully avoiding the con-
struction of elements with large dihedral angles. This result is achieved by
inserting structured layers of elements that are finally tetrahedronized.

Next, Section 3 discusses the problem of error estimation for driving the
adaption process. Two procedures are described. The first makes use of
a generalization of the Zienkeiwicz-Zhu (ZZ) error estimator, that produces
robust estimates at low computational cost. The method is essentially based
on the computation of higher order information regarding the gradients of
the solution. The estimate is then obtained by comparing the original com-
puted gradient and the reconstructed one. This procedure is known to pro-
duce excellent results for a number of different applications, and it is here
implemented in our research parallel adaptive CFD code. One drawback of
this approach is that no anisotropic information is directly available from the
computed estimator for driving a metric-based anisotropic adaption process.
To circumvent this limitation, a second procedure is proposed that is based
on estimates of the interpolation error which explicitely take into account
the anisotropy of the solution and of the mesh elements. These estimates,

6

which in principle would be prohibitively expensive to evaluate for realistic
problems, are then made computable by using the Zienkeiwicz-Zhu recon-
structed gradients. This way a local metric can be constructed for driving
an anisotropic iterative adaptive mesh method.

Finally, Section 4 presents some final remarks and comments on the work
conducted so far. In particular, we mention the highlights and the present
limitations of the layer insertion algorithms reported. We propose to comple-
ment the present procedures with metric-based point insertion algorithms,
that, at the price of lower quality grids, will extend the applicability of the
adaptive software to handle more general situations. Next, we briefly discuss
the error estimation procedures and we propose plans of future work in this
area. Finally, we conclude listing the scientific publications produced under
the support of this contract.

9. PROCEDURES FOR ANISOTROPIC MESH ADAPTION

2.1. Introduction and Motivation. Many problems in fluid and solid
mechanics present solution features that are inherently directional. For ex-
ample shock waves are characterized by gradients that are very high in one
local direction, while substantially smaller in the other two. Similarly, a
vortex shed by the tip of a wing or a helicopter blade presents gradients in
the radial direction that are much higher than in the direction of its core.
In all these and many other cases, anisotropic meshes are highly desirable
for their evident economic advantages.

It appears that structured procedures are better suited at generating
highly anisotropic grids. However, unstructured grids can discretize non-
manifold domains of arbitrary topological complexity with very little user
intervention and consequent limited work load. Furthermore, unstructured
grids can be locally adapted in order to capture the relevant solution fea-
tures to the required level of approximation. These two characteristics of
the unstructured approach are contributing to its ever-increasing success in
complex applications in many diverse disciplines.

In general, the introduction of anisotropic regions can be obtained during
unstructured mesh generation with the use of local mappings [5], although
the amount of element stretching is somewhat limited by the need to pro-
vide some form of smooth transition to isotropic regions. Furthermore, the
method tends to create large dihedral angles that affect the overall quality
of the resulting mesh.

One possible alternative is represented by the introduction of structured
mesh regions in the areas of localization, while using an unstructured dis-
cretization to fill the rest of the computational domain. The nature of
structured discretizations makes it possible for the contrasting requirements
of very high elongation and good mesh quality, in particular control of large
dihedral angles, to be more easily achieved. For example, ref. [28] develops a
semi-structured two-dimensional procedure that first forms layers of quadri-
lateral elements in the regions of high localization and then triangulates the
rest of the domain using an advancing front method. However, in three
spatial dimensions the use of local structured hexahedral meshes would lead
to non-conformity at the structured/unstructured interfaces, with obvious
complications.

In three spatial dimensions, hybrid tetrahedral/prismatic grids have been
used with success in regions of high gradients in proximity of model faces
(boundary layers). The prismatic regions present a structured discretiza-
tion in the direction of the solution gradients, which allows for extremely
high elongations with good control of dihedral angles. At the same time,
the grid furnishes an unstructured triangular discretization of the bound-
ary layer face that allows for a conforming interface with the rest of the
isotropic grid. Refs. [17, 23] develop a method for the generation of hybrid

8

tetrahedral /prismatic grids, where a prismatic mesh is obtained by march-
ing away from the model boundary an initial triangular surface mesh. An
octree-advancing front method is then used for filling the rest of the domain
with tetrahedra.

The advancing layers method [21, 10], in its various flavors, uses similar
ideas. The method starts with a triangulation of the model faces, that is
then inflated along quasi-normal directions using a modified advancing front
algorithm. Various forms of pruning and collapsing of elements in problem
regions is used for improving the robustness and generality of the method.
The process is terminated by filling the rest of the domain with an isotropic
mesh obtained via a standard advancing front method. A generalization of
the method based on multiple growth directions is detailed in ref. {15]. Since
multiple growth curves can be used at any given point, gaps are created in
the boundary layer mesh. Special blends and transition elements are imple-
mented to hide the gaps generated by the multiple growth directions that
expose highly anisotropic faces to the mesh generator. Both the advancing
layers and the hybrid tetrahedral/prismatic method are designed primarily
for generating boundary layer meshes; the anisotropic refinement of internal
features such as shock waves can be performed by adding fictitious entities
to the underlying solid model, for example by inserting an internal model
face to represent the shock wave surface.

In this section of the report, we present a set of automated procedures for
the directional refinement of three-dimensional unstructured grids defined in
complex domains, with the specific goal of allowing large values of element
stretching and good control of the mesh quality. The method is suitable both
for the generation of boundary layer meshes and for the adaptive refinement
of internal features with local one-dimensional anisotropy, i.e. with large
gradients in one single local direction as in the typical case of shock waves.
The proposed procedures start with an initial isotropic or anisotropic grid
and insert layers of prisms in the regions of localization. The location of
the regions that need to be adapted and the stretching of the inserted layers
are assumed to be known from the use of an appropriate error estimator or
from user-defined input.

For boundary layers, the procedure is normally driven by user-supplied in-
put. Attributes specifying (possibly non-uniform) boundary layer thickness,
number of layers and their geometric distribution are associated with faces
in the solid model wherever a boundary layer needs to be grown. The mesh-
ing process starts by locally deflating an initial isotropic grid, obtained with
any suitable mesh generator. The deflation of the mesh is obtained with a
specially designed mesh motion algorithm based on force control whose goal
is to make room for the boundary layer region. The highly stretched tetra-
hedra of the boundary layer region are then created by first inserting stacks
of prisms in the resulting void, between the initial and the final positions of
the external triangulation of the grid, and then by tetrahedronization of each
prism. A simple algorithm ensures the determination of the correct prism

9

splitting template that needs to be used in each case in order to obtain a
conforming grid.

For features within the problem domain (e.g. shocks), the tetrahedral
mesh is first cut along the feature. This creates a triangulated surface within
the mesh. Next, the two sides of the cut are marched away from each other
in order to make room for the prismatic mesh. Once again, the required
space is obtained by deformation of the tetrahedral grid.

In both cases, the procedures are based on the idea of opening a gap in
the mesh that has the same triangular discretization on the two sides, and
filling the resulting void with stacks of prisms. We refer to this procedure as
“wedging”. The meshing processes are based on a solid-model description
of the domain which allows for a consistent handling of the model geometry
and avoids precision losses in the presence of curved boundaries.

The proposed method achieves two main goals: first, it is able to introduce
“structured”, and therefore well-behaved, regions of elements within arbi-
trary unstructured grids; second, this result is obtained with a remarkably
simple process. In fact, all advancing layers methods grow the boundary
layer mesh in a void. This is a difficult task for highly anisotropic meshes,
and requires a number of accompanying complex correction procedures. On
the contrary, the proposed method makes careful use of the deformations
imposed on an already exiting isotropic grid together with appropriate mesh
smoothing processes in order to obtain a natural way of controlling the mesh
quality by automatically adjusting the anisotropic layer thickness and the
growth directions. Once calibrated, the procedures are remarkably simple,
being essentially based on a robust mesh smoother and on a set of prism
splitting templates, in addition to a few support routines. As far as the
generation of boundary layers is concerned, the procedures here proposed
are not as general as the advancing layers method of ref. [15], although they
seem to offer a simpler alternative in many practical cases. Furthermore,
they can also be applied to the refinement of internal features, which would
not be easy to achieve with the advancing layers method.

This section is organized as follows. Some basic terminology used through-
out this work is introduced in Section 2.2. Section 2.3 introduces the prob-
lem by discussing the internal insertion of anisotropic layers. The required
mesh cutting is explained in 2.3.1. Section 2.4 gives a general overview of
the boundary layer meshing algorithm, providing details on the prism stack
creation and on the wedge tetrahedronization. Next, we discuss the mesh
motion algorithm in Section 2.5, together with a line identification scheme
used for ordering during smoothing. Details on the practical implementa-
tion of the gridding algorithm are given in Section 2.6, where we analyze
the problem of visibility of the deflation directions, we comment on several
heuristic quality enhancement procedures that we have found useful and
effective, on the treatment of transition zones at the layer boundaries and
on the reclassification of the mesh entities. The proposed anisotropic mesh

10

generation algorithm is tested on a number of practical examples in Section
2.7. The quality of the resulting meshes is analyzed using geometric criteria.

2.2. Solid Modeling and Terminology. Any given geometric domain can
be described by a boundary representation (BRep) of its topology. The ba-
sic topological information is represented by topological entities that bound
each other, in the order regions, faces, edges and vertices. An attribute
information associated with each topological entity specifies its geometry,
e.g. a surface associated with a face or a curve associated with an edge.
Throughout this work we use the capital letters R, F, E, V to indicate
regions, faces, edges and vertices, respectively, in a solid model.

Grids can also be represented using a boundary representation, although
not all four entities are always necessarily present in any data structure.
In fact, the sets of entities required for representing a grid is somewhat
dependent on the application and the use that the application is making of
the grid itself [4]. In any case, all topological entities in a mesh are generated
by discretizing a parent entity in the geometric model. For example, a mesh
face can be obtained either by discretizing a model face or by discretizing
a model region. The term “classification” identifies this unique relationship
between each entity in the mesh with an entity in the model. The symbols
r, f, e, v are used to indicate regions, faces, edges and vertices, respectively,
in a mesh.

The procedures described in this work make use of a mesh data structure
that is interfaced with a computer aided design (CAD) system, that provides
geometric and/or topological interrogations on the nature of the domain
through a limited set of functional operations. Topological interrogations
are used for ensuring the compatibility of the mesh with the model, while
geometric interrogations are here used for the proper placement of mesh
vertices on the model boundary.

2.3. Meshing of Internal Features. We start by describing the wedging
algorithm for the case of internal features, which represents the most corm-
plex case. The case of boundary features will then just use a subset of the
described procedures.

At this point of the discussion, we will simply assume that a directional er-
ror estimator is available for the problem at hand. A possible simple method
of computing the regions of localization and the required local stretching is
discussed in ref. [28]. In any case, the procedure should be able to locally
define a minimum edge size A, in the local direction of anisotropy n and
a maximum edge size g, in the orthogonal direction.

As a preliminary step, passes of edge-based refinement are applied to the
mesh in order to meet the requirement on the local value of hpqz. Next, the
requirement on Ay, needs to be enforced. To this end, we create a surface
that gives a geometric approximation of the feature to be refined. The
geometry is obtained through the use of the error estimator that indicates
the grid points where high values of stretching are needed. The targeted

11

grid points are fitted on to a surface, that in this way approximates the
mid-surface of the region of high gradients.

2.3.1. Mesh Cutting and Local Optimization. Next, the mesh is cut along the
surface. Each tetrahedron intersected by the surface is split into tetrahedra
according to the corresponding subdivision pattern. In turn, this provides
a triangular conforming discretization of the surface. The resulting surface
mesh is stored in a list for subsequent use in the wedging process.

In general, cutting the mesh along the localization surface will locally gen-
erate elements of poor quality that will negatively effect the final adapted
grid. Furthermore, the quality of the surface mesh that will provide the
triangular faces for the stack of prisms introduced during wedging, will be
poor. Therefore, local optimization processes must be applied for restoring
the mesh quality in the region of the cut. The local optimization is inexpen-
sive, since it is applied to a surface mesh and to the layer of elements that
share mesh entities with it.

Different implementations of the local procedures are possible. The fol-
lowing sequence of operations is robust and very effective in our experience.
First, the list of newly generated mesh edges is scanned and the split loca-
tion of the parent edge is examined. If the split location deviates from the
edge mid point more than a preselected value, the edge is collapsed. Edge
collapsing in three dimensions is exemplified in figure 1. The target vertex
for the collapsing is always a vertex that belongs to the newly generated sur-
face mesh, otherwise the surface mesh would be distorted. When both edge
vertices belong to the surface mesh, the best target vertex for collapsing the
edge is chosen based on the quality of the resulting retriangulations of the
two possible polyhedra. Classification against the underlying solid model
entities allows to ensure the topological validity of the collapsing [25].

To further improve on the quality of the mesh in the region of the cut,
we apply a sequence of local optimizations in the following order: local edge
swaps on the surface mesh, face and edge splits. The whole procedure is
repeated until the local quality of the grid is restored.

We have now obtained a triangular grid that discretizes the surface ap-
proximating the feature that will be refined. The mesh entities of this grid
are now duplicated and separated, generating a single layer of prisms. The
required space for inserting the prisms is obtained by slightly deforming the
rest of the mesh using a vertex repositioning algorithm based on a ficti-
tious elastic problem, described in the following. The single layer is then
split in order to create stacks of prisms, that are subsequently subdivided
into tetrahedra. The whole procedure is exemplified in figure 2, that shows
the generation of the surface discretization, its opening and the subsequent
filling.

2.4. Boundary Layer Meshing Algorithm. For boundary layers, the
procedure is normally driven by user-supplied input. Attributes specifying
(possibly non-uniform) boundary layer thickness ¢, number of layers n; and

12

their geometric distribution are associated with faces in the solid model
wherever a boundary layer needs to be grown. The meshing process starts
by duplicating the mesh entities classified on the model faces that have
boundary layer meshing attributes. This creates two identical overlapping
face discretizations: one, termed the “model face triangulation”, will not be
affected by the meshing algorithm and will provide the surface mesh on the
model boundary; the other, termed the “transition triangulation”, will be
repositioned during the gridding process and will connect the initial isotropic
grid to the newly formed boundary layer mesh.

At this step of the procedure, each couple of associated mesh faces defines
a triangular prism of null thickness. Each prism is then subdivided into
a stack of n; prisms. Finally each prism in the stack is tetrahedronized,
using the algorithm described in Section 2.4.1. The boundary layer mesh
is then locally inflated, i.e. the transition triangulation is “pushed” away
from the model face triangulation, with the goal of reaching the desired
boundary layer thickness. The stacks of prisms follow the motion of the
transition triangulation, providing a through-the-thickness discretization of
the boundary layer.

The initial isotropic grid is deformed using a mesh repositioning scheme
in order to accommodate the motion of the transition triangulation. The
grid deforming algorithm uses fictitious springs that connect the mesh enti-
ties as described in Section 2.5. The scheme ensures that interpenetration
of neighboring mesh regions will be avoided, and therefore the mesh validity
will be guaranteed even for large motions. Furthermore, the scheme is based
on force control, i.e. suitable forces are applied at the transition triangula-
tion vertices so that the requested amount of displacement (layer thickness)
is obtained at low-curvature points. The forces are applied along marching
directions that are computed in order to guarantee the “visibility” of the
repositioned vertex from all mesh faces in the vertex-manifold, as detailed
in Section 2.6.1.

Note that only the vertices of the transition triangulation are forced to
move along the prescribed marching directions. All other vertices on each
growth curve, i.e. the lines that connect each vertex on the model face
triangulation with its sibling on the transition triangulation, are free to
be repositioned during the smoothing steps in the boundary layer mesh.
This mesh relaxation, once again due to the presence of fictitious springs
that connect entities in the grid, provides an automatic way of curving the
growth directions in regions with closely spaced faces or of high curvature.
Figure 3 shows the automatic curving of growth directions obtained in the
common case of a corner region.

The procedure automatically deals with problem configurations, as for
example concavities with high curvature, and avoids self-intersections when
layers are grown on closely spaced model faces. In fact at problem locations,
as for example points of high curvature or sharp corners, the applied force

13

will automatically generate smaller grid deformations than in “fat” loca-
tions, since the fictitious structure is locally stiffer. Applied forces are also
adjusted by the algorithm according to the local characteristic dimensions
of mesh regions, in order to reduce the final displacement in areas where
elements are smaller, typically where curvature based refinement has been
used by the isotropic mesh generator. Finally, in order to obtain a smoother
variation of vertex displacements, applied loads are corrected through a dis-
tance weighted averaging among all vertices in a vertex-manifold. A typical
grid resulting from this process is exemplified in figure 4.

In the case of the advancing layers method, self-intersections are usually
created in regions of high curvature or at closely spaced faces. Fixing of
boundary layer intersections must then be accomplished by shrinking and
pruning of layers. Furthermore, a localization structure, e.g. an octree, is
needed in order to identify all the self-intersecting elements avoiding O(n?)
operations. We note that the need for intersection checks and fixes is com-
pletely avoided with the present method, since the possibility of creating
intersections is avoided a-priori.

The repositioning of the transition triangulation is usually performed in
incremental steps, i.e. a first value of the load is imposed on the triangu-
lation vertices and the isotropic and boundary layer grids are repositioned
using a few smoothing steps of the mesh motion algorithm; next, a second
load increment is applied on the vertices followed by smoothing. The pro-
cess continues until the desired layer thickness is obtained. Throughout this
process, checks are performed in order to ensure that the computed dis-
placements do not cause a vertex to cross the planes identified by each mesh
face of the polyhedral cavity containing it. If a plane crossing is identified,
the applied load is decreased accordingly. Consequently, it is possible that
a vertex does not reach the desired final displacement, stopped in its move-
ment by a neighboring face. In order to avoid local abrupt changes in the
displacements of the transition triangulation with consequent possible sever
deformations of the mesh, which of course have a negative impact on the
final result, it is beneficial to propagate these load changes to the applied
loads of the neighboring vertices. This is here accomplished by a distance
weighted averaging for all vertices in the vertex-manifold.

2.4.1. Tetrahedronization. Prisms in the anisotropic region are tetrahedron-
ized. In fact, in general a hybrid mesh that consists only of tetrahedra in
the isotropic part of the grid and of prisms in the anisotropic layer, can-
not be guaranteed, unless suitable constraints on the definition of the layer
growth attributes are specified, as detailed in Section 2.6.3. Clearly, the
tetrahedronization has to be conforming, in the sense that prisms sharing
a quadrilateral face need to use the same of the two possible splittings of
that face. All possible tetrahedronization templates for a prism are given
in figure 5. Each template can be symbolically represented by orienting the
edges of one of the triangular faces of the prism, according to a conventional

14

rule, as shown in the figure. Note that no template induces a closed loop
orientation of the edges.

This fact can be used for constructing a simple algorithm that ensures
a correct tetrahedronization. To this end, the list of vertices in the model
face triangulation is traversed. Each visited vertex orients all edges that use
it and that have not yet been oriented. The orientation is always defined
according to a pre-specified rule, e.g. in the direction pointing towards the
vertex being examined. The procedure is exemplified in figure 6. Once all
vertices in the surface mesh have been visited, all edges have been oriented.
It is easily shown that no closed loop can be generated by such process.
Therefore, the computed orientations can be used for determining the correct
prism splitting template.

2.5. Mesh Motion Algorithm. The mesh motion algorithm is used for
deflating the isotropic mesh. A suitable design of such algorithm is criti-
cal for the performance of the proposed method. The vertex repositioning
problem must be solved within the following constraints. First, the grid
must not be severely deformed in the proximity of the anisotropic layer in
order not to degrade its quality. Second, it must provide an automatic way
of dealing with problem regions, as mentioned earlier. Third, it must be
robust and efficient, and in particular it must not generate invalid elements
even for large amplitude motions. In order to satisfy the constraints, the
following procedure was devised.

The algorithm is based on a fictitious elasticity problem, based on replac-
ing the mesh edges with springs. Following ref. [3], the spring stiffnesses
are inversely proportional to the edge lengths in the initial configuration,
so that small elements tend to be very stiff while larger elements are softer.
However, the method in its classical form can entangle the mesh when a ver-
tex crosses a neighboring mesh face. This means that the classical algorithm
can only be used for moderate mesh displacements. An improved method
based on the use of additional torsional springs at the vertices was proposed
in ref. [12] for two-dimensional grids. The torsional springs are designed
so as to guarantee that neighboring triangles can not interpenetrate each
other, in order to ensure that mesh entanglement will be avoided. However,
the introduction of torsional springs renders the problem non-linear, so that
a linearized version of the scheme must be developed. Furthermore, the
method becomes quite cumbersome in three spatial dimensions.

Hence, we propose here a new method that is simple, yet guarantees valid
meshes even for motions of large amplitude. The basic idea is to use the
classical edge springs of ref. [3] together with additional linear springs that
prevent a mesh vertex from crossing a neighboring face. For each region r
using a vertex v, a new linear spring is constructed that connects v with
its projection v’ on the plane of the face f of r opposite v. This additional
spring is exemplified in figure 7 for a single tetrahedron connected to a
vertex, for clarity.

15

Once the additional springs are constructed for all tetrahedra using a
vertex, one has effectively constrained the same vertex not to leave the
polyhedral ball that encloses it, therefore ensuring a final valid mesh. Fur-
thermore, the presence of the additional springs is also beneficial in terms of
mesh quality, since they will tend to keep each vertex closer to the centroid
of the ball, pushing it away from its boundary. The resulting mesh repo-
sitioning scheme is linear, and can be straightforwardly modified to handle
the two—dimensional case.

In classical mesh motion problems, the displacements at an interface, e.g.
a fluid/solid boundary, are imposed at the grid vertices at that interface.
The displacements are then propagated to the rest of the grid using some
form of smoothing. This ensures that the required displacement is always
achieved, at least as long as the smoothing algorithm does not entangle the
mesh. Such an approach is unsuitable for the present application. A better
way of deforming the mesh is through an algorithm based on force control,
not displacement control. In practice, a force is applied at mesh vertices
on the transition triangulation along a suitable local direction. This force
is calibrated in such a way as to produce the required local displacement
in a nearly flat boundary case. When the boundary presents sharp corners
or high curvature, the local forces are not able to deform the mesh to the
extent of producing the required displacement, since high local deformations
would be required. These deformations are resisted by the stretching and
compressing of the linear springs. '

Care is exercised in order to ensure the visibility of the displaced vertices
from their parents, and for guaranteeing that the deflation process advances
along directions close to the local normal. The computation of local growth
directions is discussed in Section 2.6.1. _

The smoothing process is based on a vertex-by-vertex relaxed Gauss-
Seidel scheme. Vertices in the isotropic region are ordered using the algo-
rithm described in Section 2.5.1, with the goal of maximizing for each newly
processed vertex the number of already processed adjacent vertices. This
helps in propagating effectively the displacements throughout the mesh even
with a small number of iterations.

The same smoothing is applied in the isotropic and anisotropic parts of
the grid. However, while in the isotropic grid the goal of smoothing is
that of deforming the mesh in order to accommodate the mesh layer, in
the anisotropic mesh it determines the distribution law of layer thicknesses
normal to the wall. In fact the transition triangulation, pushed by the ap-
plied loads, pulls with it the various layers of prisms away from the model
boundary, layers that, at the beginning of the process, are of null thickness
and are all collapsed onto the model face triangulation. This pull is real-
ized by the smoothing process in the anisotropic grid. A small number of
iterations will produce thinner layers close to the model face, approximat-
ing a geometric distribution, while a larger number of iterations will tend
to create an equally distributed spacing between layers. This is easily seen

16

in a one-dimensional case, where one has a string of points connected by
equal springs. The points are initially all coincident. Next, the first point
is displaced by a distance d. All other points are then processed using a
Gauss-Seidel iteration. The second point in the string is repositioned, and
its equilibrium position is at d /2. Next, the third point is considered, and its
equilibrium position is found at d/4, and so on. When one full Gauss-Seidel
iteration has been performed, all points have been processed once and their
positions are given by a geometric distribution. Increasing the number of
Gauss-Seidel iterations will tend to equidistribute the point positions, yield-
ing equal spaces between them. It is clear that other distributions could be
obtained using progressively stiffer or softer, rather than constant, springs
connecting the points. This simple one-dimensional model approximates the
behavior of the grid vertices along a growth curve in the anisotropic layer
mesh. Note that in this region, different numbers of smoothing steps can be
used along growth curves or in orthogonal directions. In fact, while the for-
mer controls the layer spacings, the latter curves the growth directions and
might require a different number of smoothing passes to yield a satisfactory
solution.

Using the advancing layers method, one explicitly constructs the layers
according to a specific spacing function and would therefore probably not
use 3 smoother inside the boundary layer region. This approach on the
one hand gives total control on the layer thicknesses, but at the same time
makes a little harder to guarantee the element quality since there are few de-
grees of freedom to play with, especially if one does not use curved growth
directions. On the contrary, it is clear from the previous discussion that
the proposed method can only approximate the spacing function using the
smoother. The control on the layer thicknesses is then somewhat reduced
in the present case when compared with the advancing layers technique.
However, it should be remarked at this point of the discussion that one
characteristic of the proposed approach is that all the basic steps of the gen-
eration of an anisotropic layer region, namely computation of the growth
directions and of the growth displacements, curving of growth curves, com-
putation of the grid spacing normal to the wall, etc., are now all blended
in one single process, the mesh smoothing. This means that the various
steps are not realized in any particular order, as with other algorithms, but
are all coupled together and in this sense each one of them affects all the
others. Therefore, while one is pushing on the transition triangulation for
making room for the anisotropic layer, one is also relaxing the positions
of the new grid points within the layer according to the fictitious elasticity
problem solved by the smoothing algorithm, achieving at once all the various
necessary goals. While on the one hand this necessarily reduces somewhat
the available control as previously noted, the intimate coupling of the ba-
sic logical steps of the mesh generation process implied by this approach
would seem to offer the potential for a beneficial effect on the quality of the
resulting grids.

17

2.5.1. Mesh Ordering Algorithm. For efficiently propagating the information
during the smoothing process, vertices need to be ordered. The problem is
somewhat similar to the generation of the line orderings used by relaxation
algorithms for the iterative solution of discrete operators on unstructured
grids. In view of the fact that a very limited number of smoothing steps will
be performed for efficiency reasons, we would desire to maximize for each
vertex the number of already processed neighbors.

A simple ordering scheme was devised for this application, based on a
modified greedy algorithm [13]. First, model faces with growth attributes
are collected in connected sets, i.e. if two model faces share a common
model edge or vertex they are assigned to the same set. Next, a mesh vertex
classified on model boundary is selected for each connected set. This vertex
represents the “seed” point for an ordering process. The seed vertex is
assigned the number 1 and labeled v;. Starting from v, all edge-connected
vertices that are also classified on the connected set or its boundaries are
gathered, numbered and stored in a linked list. The vertex that has been
assigned the number 2, v3, is now considered. The process is repeated, and
all edge-connected vertices to vz that are also classified on the connected set
or its boundaries are collected in the list and numbered. At the end of this
first phase, all the numbered vertices are on the transition triangulation, and
therefore are all directly affected by the imposition of the loads that drive
the smoothing procedure. The process is now restarted from vertex vi.
All edge-connected vertices that have not yet been numbered are gathered,
numbered and stored in the linked list. Next, vertex vz is considered, and all
its edge-connected vertices that have not yet been numbered are processed.
The procedure continues until all vertices have been numbered.

The algorithm essentially constructs successive layers of vertices, the first
layer being the transition triangulation, that wrap the connected set and
march away from it. The procedure is illustrated in figure 8. A typical
example of the ordering constructed in this fashion is given in figure 9 for the
two-dimensional mesh of a submarine model. The growth set is composed of
all the model edges that form the submarine silhouette, while the seed point
is labeled P. Colors represent the numbers associated with the vertices by
the numbering process. Note how the ordering creates layers that enclose
the model boundary propagating outwards towards the rest of the domain.
The described process is straightforwardly generalized to handle the internal
layer case.

2.5.2. Improved Centroidal Smoothing. An additional way of locally improv-
ing the grid quality is provided by some variant of the well known Laplacian
smoothing process [14]. A general form of the scheme can be written as

> wib;

(1) PIZW’

18

where P is the point associated with a given vertex v and the P;’s are the
points associated with the vertices that are edge-connected to v. This form
of local smoothing was used in the present work as a further help in trying
to remove problematic configurations.

This method is quite effective for improving the grid locally. However,
some care should be exercised since the polyhedral region defined by the
P;’s might be non-convex. This situation is most likely to happen in highly
distorted regions, or in the proximity of closely spaced faces and corners,
exactly where the need for local improvement is the highest. Since even a
non optimal repositioning might lead to some local improvement in these
pathological situations, a modified strategy was devised. The basic idea is
to “regularize” the problem by constructing a convex region around vertex
v using some new points P, instead of the vertex points P;. At this point,
the update defined by (1) can be used safely.

To present the main idea behind the proposed algorithm, we can start
from the simpler two-dimensional case. The edge-connected points F; define
in this case a polygon. Each polygon edge divides the plane into two semi-
planes, one that contains v and that therefore defines valid repositionings of
the same vertex, and a second one that will produce invalid repositionings.
The “right” final convex polygon for the safe application of one pass of
Laplacian smoothing is now given by the boundary of the figure obtained
by intersecting all the valid semi-planes. This is exemplified in figure 10 for
a simple concave configuration. In reality we do not need to define the real
edges of this new regularized polygon, but only its vertices, since only these
are needed for doing Laplacian smoothing.

The position of these vertices can be practically computed by considering
subsequent intersections between couples of edges of the original polygon.
For a convex polygon, all these intersections coincide with the vertices of
the polygon itself. However, for a non-convex figure, additional points will
be generated. All points need now to be checked against all polygon edges
to determine whether they are on the valid semi-plane or not. This is easily
determined by defining an arbitrary normal to the edge and considering two
distance vectors, one between one of the edge vertices and the vertex that
will be repositioned, v, and the second between the same edge vertex and
the point that needs to be checked. One then computes the dot products
of the edge normal with each distance vector; if the two products have the
same sign, the checked point and vertex v are on the same semi-plane and
the point will be retained, otherwise they are on different sides and the
point needs to be rejected. The process is continued untill all points have
been checked. At the end of the procedure, the remaining points define the
regularized polygon.

In the three-dimensional case, the same idea can be generalized by con-
sidering now all points generated by the intersections of all the edges of the
surface of the polyhedral region with all its triangular faces. Once again,

19

each newly generated point needs to be checked to see whether it lies on the
valid semi-space with respect to vertex v.

2.6. Implementational Issues.

2.6.1. Computing Deflation Directions. Marching directions are based on
the “normal” to the vertex-manifold, i.e. to the group of mesh faces using
the vertex and classified on model faces or on the cutting surface. In fact, in
order not to create invalid elements, the new vertex position must be visible
from all faces in the manifold. We note that we could use the normals to
the model faces rather than the mesh faces when growing boundary layers,
since the procedures have access to the true problem geometry through a
solid modeling system. However, for coarse meshes this might violate the
visibility condition. In this work, we use the method suggested in ref. [18]
for computing the initial values of the directions. The algorithm first renders
the problem two-dimensional by finding the bisection plane for the wedge
identified by the two faces f; and f in the v vertex-manifold that form the
smallest dihedral angle. Then, the visibility angle on that plane is bisected
to identify the manifold normal. A visibility cone can now be constructed
at v, tangent to f; and f5.

In regions with high curvature, at corner points or in proximity of model
faces forming small dihedral angles, it is beneficial to let the marching di-
rections slightly deviate from the manifold normals computed as explained
above. This reduces the convergence or divergence of the growth curves,
therefore minimizing the local compressing and stretching of the transition
triangulation. To this end, the nominal normals are smoothed by distance-
weighted averaging. Given a vertex and its normal, first all normals at the
vertices in the vertex-manifold are smoothed, i.e. a first ring of normals
around the vertex is processed. Next, all faces adjacent to the vertex-
manifold are considered, and their normals at vertices are smoothed, i.e.
a second ring of normals around the vertex is processed. The process is
continued until a preselected number of rings (typically four or five) has
been affected by the smoothing. After smoothing at each vertex, the new
marching direction is verified to lie within the visibility cone, in order to
ensure the validity of the subsequent repositioning.

We note once again that the deflation directions determine the marching
vectors of the sole vertices in the transition triangulation. All other vertices
within the anisotropic layer, i.e. all vertices along the growth curves, will be
allowed to deviate from these directions according to the layer smoothing
process. This will provide an automatic way of curving the growth curves
according to the local problem geometry.

2.6.2. Mesh Quality Enhancements. Mesh smoothing is in some sense lim-
ited by the topology of the grid, since it only deals with the repositioning
of the vertices, and can not change the local connectivity. In order to relax
this constraint and to further ensure that the isotropic grid quality is not

20

affected by the repositioning process, local retriangulation operations are
recursively applied where needed. The local optimization criterion is based
on the largest dihedral angles of each tetrahedron. The retriangulation does
not affect the topology of the transition triangulation, not to interfere with
the highly stretched elements in the boundary layer, unless severe local de-
formations can not be corrected through the already described repositioning
procedures.

Five basic retriangulations are considered: edge removal and its inverse
operation multi-face removal, edge swapping, edge collapsing, and entity
(region, face and edge) splittings [11]. As a first step, the dihedral angles
of all elements considered for optimization are calculated. Each element
violating a user—defined threshold value is put into a linear list. Depending
on the configuration of each element in the list (number of dihedral angles
above the threshold value, topological or geometrical constraints, etc.), a
suitable subset of the above mentioned optimization procedures is applied
to eliminate that element in favor of improved elements. The procedures
might fail for a specific element if the resulting configuration is topologically
or geometrically not valid, or if they lead to a degradation of the quality
of any element involved in that local retriangulation. In this case, or if the
element is improved but the largest dihedral angle is still above the threshold
value, the element is considered for improvement in a second pass, after all
elements have been processed. Since the neighborhood of the elements that
failed in the first pass may have been modified, it is possible that they are
fixed in a second pass. The procedure is repeated until a given threshold
value is reached or no further improvement can be achieved.

Local coarsening can also be used in a different context. In fact, if bound-
ary layers need to be grown on closely spaced model faces facing each other,
the squeezing and compressing of the isotropic grid could not allow to reach
the desired layer thicknesses. In this case, local coarsening can be applied
in the isotropic region, for easing the growth process.

2.6.3. Ending Layers. In the case of hybrid/prismatic mesh generators, lay-
ers are grown around all boundary faces of a body. In many applications
however, boundary layers are needed only on a limited set of the model
faces. The procedure here described can deal with situations involving adja-
cent faces with different boundary layer growth attributes. Figure 11 shows
the common case of a boundary layer whose thickness goes to zero at a
model edge. This is simply handled by specifying a null growth for the
mesh vertices classified on the model edge, followed by the already described
prism splitting and tetrahedronization. A subsequent pass of mesh collaps-
ing eliminates all edges of zero length, providing the required grid. Figure
12 shows the other common case of a boundary layer ending at neighboring
model faces. Interaction with the solid modeler ensures the correct posi-
tioning of the boundary layer vertices on curved model faces, as detailed in
Section 2.6.5. The selection between an edge-ending layer (figure 11) or a

21

face-ending layer (figure 12) is determined based on the maximum allowable
dihedral angle in the mesh, typically 160 deg.

Clearly, if all model faces are tagged with a boundary layer, or if all grown
layers end on model faces as in the case of figure 12, the final prism tetra-
hedronization can be skipped, and one obtains a mixed hybrid/prismatic
grid.

There are however situations that require special attention. Figure 14(a)
gives an example of a possible problematic configuration: in this case a
boundary layer will be grown on face Fy, but not on faces Fo, F3 and F4.
One possible solution would be to allow for two growth curves at vertex Vi,
one classified on edge E; and one on edge E;. A simpler solution is sketched
in figure 14(b) and (c). In essence, the boundary layer is allowed to spillover
to the neighboring faces in a transition region of thickness comparable to
that of the boundary layer itself. Figure 14(b) shows the patch of mesh
faces involved in the process. Figure 14(c) shows the detachment of the
patch of faces from the model boundary, and the creation of the boundary
layer region. Now all boundary layer elements belong to one of the two cases
of figure 11 and 12, so that the standard procedures can be used.

Another example of anisotropic layer boundaries that need special han-
dling is represented by the case of an internal layer that ends within the
domain, i.e. it does not extend all the way to a model boundary. A common
such case is encountered, for example, when refining a shock wave at the tip
of a blade; the anisotropic layer in this case will end at a certain distance
from the blade surface, close to the shock boundaries, and will clearly not
have to extend to the far field for efficiency. In this case, the layer thickness
will have to be null at its internal boundary, similarly to the previously dis-
cussed boundary layer case with zero thickness at a model edge. Here again
a null growth length is specified for the mesh vertices at the internal edge
of the layer, followed by the already described prism splitting and tetrahe-
dronization. A subsequent pass of mesh collapsing eliminates all edges of
zero length, providing the required grid. The result of such procedure is
exemplified in figure 13.

2.6.4. Reclassification. Certain applications will require the entities of the
final adapted grid to be completely classified, for example when the anal-
ysis attributes (boundary conditions, loads, material properties, etc.) are
associated with entities in the solid model, so that they can be consistently
transferred to the new adapted grid for use by the solver. Furthermore,
a correct classification information is necessary for repositioning the mesh
vertices on curved model boundaries in order to provide geometrically consis-
tent grids and avoid loss of precision, as detailed in Section 2.6.5. Because
of these reasons, it is necessary to compute the classification of all newly
created mesh entities.

Vertices classified on a model entity of degree k are always reclassified on
an entity of degree k + 1. Therefore, vertices classified on model faces are

22

always classified internal. For vertices classified on model edges, one has to
check whether both model faces that use that edge are associated with a
boundary layer attribute. In case they both have attributes, the vertex is
classified internal, otherwise it is classified on the model face that does not
have the boundary layer attribute. This situation is exemplified in figure
15. Mesh v; is classified on model edge E;, which is used by face F; and
face F3. Since a boundary layer is grown only on F3 and assuming a face-
ending layer, the newly generated vertex v; is necessarily classified on Fy.
Similarly, for vertices classified on model vertices one has to find the model
edge that is used by model faces that are not tagged for boundary layer
growing. Again with reference to figure 15, the newly generated vertex Vg
is necessarily classified on model edge Es.

2.6.5. Dealing with Curved Boundaries. For accuracy, it is critical that newly
generated or repositioned mesh vertices are placed on the true model bound-
ary. The classification information together with the direct interfacing of the
procedures with a solid modeler, provide for a straightforward solution to
this problem. In fact, all mesh entities, including the ones generated in the
boundary layer, are classified against the various model entities, as discussed
in Section 2.6.4. Then, after each smoothing step, each mesh vertex clas-
sified on model face or model edge is snapped to the boundary. The new
location is provided by the solid modeler through a closest point interroga-
tion. The position of the mesh vertex before the smoothing pass is used as
the initial guess for the interrogation.

It should however be noted that the simple snapping of vertices to the
boundary can in some cases generate invalid or severely distorted elements.
More sophisticated techniques can be used for dealing with this issue, for
example by applying local retriangulations as suggested in ref. [20].

2.7. Numerical Examples. In this section, two test cases demonstrate the
developed procedures for the refinement of boundary features, while a third
case shows the insertion of internal anisotropic layers. More examples and
additional details can be found in refs. [6, 7].

2.7.1. Mesh Quality Measures. For the examples here considered, mesh qual-
ity measures are given in terms of geometric criteria. This allows to deter-
mine the grid characteristics in a solver and application-independent man-
ner, while actual numerical simulations would raise questions concerning the
particular finite element or finite volume formulation, boundary conditions
used and other problem dependent issues.

Two quality measures are considered in the following. The first is the max-
imum dihedral angle between two neighboring mesh faces, Qs = max;=160;,
where the angle at edge i shared by faces j and k is §; = m % arccos (7, - fix),
with 7i; the normal to face I. Large dihedral angles can negatively impact
the solution of partial differential equations, affecting the discretization error
and the conditioning of the discrete problem [2]. The second quality measure

23

is the ratio of the radii of the inscribed and circumscribed spheres, Qs = r/R,
and gives a measure of the stretching of an element. The boundary layer
meshing process should not significantly affect both measures for the in-
coming isotropic mesh, while it should generate elements in the anisotropic
regions that have the largest dihedral angle close to 7/2, and that match
the requested value of stretching.

2.7.2. Nacelle. The first example deals with the growth of a boundary layer
on an aeronautical engine nacelle. For this problem 10 anisotropic layers
were grown on the nacelle model faces, with geometric thickness distribu-
tion in the direction normal to the wall. A constant boundary layer thickness
was requested, implying a value of stretching ranging from about 5 to about
40. Stretching varies because of non-uniform layer thickness and because
the model face triangulation is graded due to curvature based refinement.
The initial isotropic grid had 119240 tetrahedra, and 5318 mesh faces clas-
sified on model faces with growth attributes. The final resulting grid has
429020 tetrahedra, and is depicted in figure 16. Elements in certain parts
of the boundary layer were removed to expose the anisotropic grid and the
underlying model face triangulation. Elements in the isotropic part of the
mesh are not shown for clarity.

Figure 17 shows a histogram of the maximum dihedral angles for the
initial and adapted grids. For the adapted grid, only dihedral angles for
tetrahedra in the isotropic region are shown. Therefore, the figure compares
the quality of the isotropic grid as produced by the mesh generator and
after it has been affected by the mesh repositioning required for inserting
the boundary layer. It appears from the plot that the distribution of angles
is even better for the adapted than for the initial grid.

Figure 18 shows a histogram of the maximum dihedral angles for the sole
anisotropic part of the adapted grid. Note how the maximum angles are
clustered around 7/2 in this region, deviations from this value being due
to the regions of high curvature close to the lip of the nacelle. Figure 19
shows a histogram of the ratio of the radii of the inscribed and circumscribed
spheres, Qs, for the sole anisotropic part of the adapted grid. The stretching
measures are clustered around the range of expected values, from 5 to 40.

2.7.3. Submarine. The second example shows the growth of a boundary
layer around a more topologically complex submarine model. In this case 6
anisotropic layers were grown on the submarine model faces, with geomet-
ric thickness distribution in the direction normal to the wall. The initial
isotropic grid had 165305 tetrahedra, with 6994 mesh faces classified on
model faces with growth attributes. The final grid has 291197 tetrahedra,
and is shown in figure 20. Even in this case, certain parts of the boundary
layer were removed to expose the anisotropic grid and the underlying model
face triangulation.

Figure 21 shows details of the anisotropic grid. Both the junction of
the leading edge of the fin with the submarine tower and the tip of the fin

24

are shown. Various features of the proposed procedures are simultaneously
visible, in particular the tilting of growth directions, the curving of growth
curves and the variable boundary layer thickness.

Even in this case, the quality of the initial grid is not significantly affected
by the repositioning required for the insertion of the boundary layer. Figure
22 shows a histogram of the maximum dihedral angles for the initial and
adapted grids, in this latter case considering tetrahedra in the isotropic
region only.

2.7.4. Insertion of a Thin Layer. The third example concerns the introduc-
tion of an internal anisotropic layer. We consider a simple cubic domain
with a quarter sphere cut-out at one of the corners. First, a boundary layer
mesh is grown on the sphere surface, as previously explained. Next, we in-
sert a thin layer of elements in front of the sphere using the internal layer
algorithm detailed in the previous pages. This example is entirely of an
academic nature, especially since no particular attention was paid to pro-
duce the necessary mesh gradation for a realistic computation, but might be
representative of the refinement of a strong shock in front of a blunt body.

Figure 23 shows a view of the internal surface of the sphere, of the
anisotropic layer and of the isotropic mesh. Elements in the isotropic and
anisotropic grids were removed in order to show the mesh interior. Figure 24
offers a slightly different view of the same problem, where now only elements
in the isotropic grid were removed.

Although the problem topology is quite simple in this case, this problem
shows some of the typical difficulties encountered with more realistic appli-
cations, namely the arbitrary cut of elements and the collision of the cut
front with the model boundaries. Even in this case, it was observed that
the mesh quality measures remained essentially unchanged by the proposed
procedure in the isotropic mesh, while the anisotropic grid is of very high
quality with virtually no large dihedral angles.

25

3. PROCEDURES FOR ANISOTROPIC ERROR ESTIMATION

3.1. Introduction and Motivation. The a-posteriori estimation of the
error associated with finite element solutions is still an area of very ac-
tive research. Among the many procedures proposed, we can mention here
residual-based methods and various types of recovery-based estimators (see
refs. [27, 1] for a review of available techniques).

A procedure that is simple and yet very effective is the Zienkeiwicz-Zhu
(ZZ) error estimator [29, 30], that reconstructs smoother gradients than the
ones associated with the numerical solution of the finite element problem.
Various possible implementations of the method used to recover gradients
are possible and have been proposed and tested in the past, for example
the superconvergent patch recovery (SPR), the Clémant interpolation, and
various form of averaging [19, 24].

Usually these procedures amount to averaging the piecewice constant gra-
dient VuP over suitable patches of elements around a given node (patch
assembly point), in order to obtain a continuous piecewise linear recovered
gradient. This recovered value is sometimes found to superconverge to the
gradient of u on a set of points, which coincide with the patch assembly
point when using linear elements.

The concept of effectivity index is frequently used to measure the quality
of an error estimator. The effectivity index is defined as

n
9=
ek

where 7 is the global error indicator

1/2

n={ Y n]
KeTy,

over the triangulation 7; of the domain Q, nk being the elemental error
indicator. An error estimator is said to be asymptotically exact if 6 — 1
when the mesh size h approaches zero. There is a relationship between the
accuracy of the recovered gradients and the effectivity index, and in fact if
the gradient recovery is superconvergent, the error estimator is asymptoti-
cally exact [29, 30]. The ZZ estimator is indeed asymptotically exact, if the
solution is sufficiently smooth and the grid possesses certain properties of
regularity [24]. In practice, the ZZ estimator has been applied to more gen-
eral unstructured grids with interesting results [30]. This indeed motivates
the use of the ZZ procedures even in the context of the applications that are
releveant to this research project.

It should be mentioned that in reality, for realistic adaptive applications
where the grid size will clearly not tend to zero, or on highly anisotropic
grids, the requirement of asymptotical exactness is more appropriately re-
placed by a saturation assumption [27], which can be expressed as

| VZ2ul — Vu || 2@y < B || Vub — Vu || 12(q),

26

with 8 € [0,1), where VZZyh is the ZZ recovered (improved) gradient.

In this work we use the ZZ estimator for driving the adaption process.
At first, we have generalized the ZZ method to the compressible Euler and
Navier-Stokes equations written in terms of entropy variables. This yields
a numerical procedure that is directly usable per-se and that has been im-
plemented in our parallel adaptive software based on the Galerkin Least-
Squares finite element formulation [9, 8]. This formulation of the estimator
is briefly described in Section 3.2. Next, we try to go beyond the simple use
of the ZZ estimator, and we present some preliminary work on the coupling
of the ZZ recovery with an estimate in the energy norm of the interpolation
error which takes into account explicitely the anisotropic information of the
solution and of the mesh elements. This part of the work is described is
Section 3.3.

3.2. An Implementation of the ZZ Estimator for the Compressible
Euler and Navier-Stokes Equations. The Navier-Stokes equations can
be written as

(2) Xov,t + K,’V,i = (ﬁijv,j) . +F.

Denoting by U the conservative variables, V. = 0H, /0U are the entropy
variables, defined starting form a generalized entropy function H = H(U).
Furthermore, Ag = 8U/AV denotes the associated Reimannian metric ten-
sor, which can be used for defining consistent energy norms.

To discretize the Navier-Stokes equations in space and time, we use the
Time-Discontinuous Galerkin finite element method, stabilized using the
Jeast-squares formulation of ref. [26]. The spatial discretization uses linear

shape functions.
According to the ZZ method, the energy norm of the error is then com-

puted as

B 1/2
3) lle" = (/Q (vZ2vh - Vvh) . diag[Ao] (VZth - vvh) dQ) ,

where _
- Ao
diag[Ao] =
A
and
a()
3:12 1
a()
0xq

where d is the number of space dimensions. VZZ V™ is the recovered gradient
of the entropy variables, which is here computed based on averaging using
element volumes. This technique is here favoured to the alternative offered

27

by least-squares fitting. In fact, it is not uncommon in realistic applications
to incur in local mesh configurations that will make the least-squares re-
construction singular or very ill-conditioned. For example, this will happen
every time one has the centroids of the patch of regions that lie on the same
plane.

The implementation of the formulation is straightforward and was easily
parallelized using the message passing protocol MPI, as for all the rest of
the code.

This form of the estimator can be used for driving isotropic adaption pro-
cesses. Elements where the local percentage error is above a user-determined
threshold are refined. In this work we use edge-based mesh modification
primitives, and therefore the elemental errors are reinterpolated onto the
mesh edges before adaption. In turn, edges marked for refinement are split
using all possible tetrahedral edge-splitting templates. Alternatively, edges
can be collapsed if local coarsening is requested.

3.9.1. Numerical Ezamples. We report here two simple numerical experi-
ments that were used, among others, to assess the correct implementation
of the methodology.

The first example is a two-dimensional steady problem consisting of a
Mach two flow over a wedge at an angle of 10 deg, resulting in the creation
of an oblique shock at the wedge leading edge. Since the code only supports
three-dimensional elements, the problem was solved adding a third dimen-
sion equal to one tenth of the domain size. Figure 25 gives the true (at left)
and computed (at right) error on the initial coarse grid. Good matching
between the two quantities can be observed at all locations in the regions
of the shock. Next, an automated adaptive analysis was started, using the
computed ZZ error to drive the mesh refinement as previously explained.
Figure 26 shows the obtained grid after two refinement steps. A nice and
well distributed clustering of elements can be observed in the region of the
shock.

Next, we consider the classical Onera M6 wing in transonic fligh. The
wing is characterized by an aspect ratio of 3.8, a leading edge sweep angle of
30 deg, and a taper ratio of 0.56. The airfoil section is an Onera D symmetric
section with 10% maximum thickness-to-cord ratio. We consider a steady
flow problem characterized by an angle of attack a = 3.06 deg and a value of
M = 0.8395 for the freestream Mach number. In such conditions, the flow
pattern around the wing is characterized by a complicated double-lambda
shock on the upper surface of the wing with two triple points.

Figure 27 shows the error computed by the implemented error estimator
on the initial grid. The error correctly identifies the region of the shock, and
also targets the leading and trailing edges for refinement. Finally, figure
28 shows the adapted mesh obtained after two analysis-estimation-adaption
cycles.

28

3.3. An Anisotropic Recovery-Based A-Posteriori Error Estima-
tor. In this section we report an alternative use of the ZZ recovery tech-
nique, that aims at developing a true anisotropic estimator. It should in
fact be noticed that the ZZ method, in its original formulation, does not
directly allow for the construction of a local metric [16] that can then be
used for driving an anisotropic adaption procedure. The basic idea of the
formulation is briefly described in the following, and more details can be
found in ref. [22] and the literature cited therein.

At first, we define a linear mapping that associates the reference element

K to the actual element K:

(4) T = MgZ + .

The non-singular Jacobian Mk can be factored by a polar decomposition as
(5) Mg = B Rk,

where By is symmetric and positive definite, while Rg is orthogonal and
amounts to a rotation. The eigenvalues of Bx are denoted \;k, i = 1,d
and their associated eigenvectors are denoted @; i, i = 1,d.

It is possible to prove under appropriate conditions that, given the bilinear
form B(uP,v") corresponding to the weak form of, e.g., a diffusion problem,
the bilinear form B(el,v"), where e® = u — u” is again the discretization
error, can be bounded as follows

(6) IBe",v)ll < Y axpx(u")wk(v).
KeTh
The first quantity appearing in the previous expressions can be synthetically
given as
ak = ag(Mik),
while the second term is

px (uh) = pi (ri(uh), Rx (u"), miin()\i,K))-

In the previous expression, rx(ul) denotes the elemental internal residuals,
while Rg (u") represents the elemental boundary residuals. Finally, the last
term writes

where Gk (v) is a symmetric non-negative matrix defined as

Gx(v) = Y /TVv®VvdT,

TeP

where P}, is the patch of all elements that share a vertex with element K.
These results can be used for computing a-posteriori error estimates based

on the solution of the dual problem. This can be very expensive for non self-

adjoint problems. A more interesting idea is to set v = e” in (6), to get an

29

implicit estimate for the square of the energy norm of the discretization error
as
(7) eI > axpr(@)wk(e”).
KeTh
Since the right hand side of (7) still depends on the error, we need to replace
wi(eh) with a computable quantity. An elegant solution is to use the ZZ
recovery technique to replace Gk (e") with a new quantity G K (eZ%h) defined
as
GK(eZZ’h) = Z /(szvh -V ® (VZZ'uh — Vo) dT.
TeP, ' T
Finally we get a computable a-posteriori recovery-based error estimator de-
fined on each mesh element as
(8) nk =Y axpx(tywg(e??").
KeTh
This estimator provides anisotropic information in a consistent manner,
since it is based on the ZZ recovery that is known to perform very well
in a number of circumstances, and is also cheap to compute.

Ref. [22] gives details on how it is possible to reconstruct a local metric
based on the estimator, in order to drive an anisotropic mesh modification
procedure. In particular, a piecewise constant metric matrix can be com-
puted on each element of the triangulation based on the knowledge of its
eigenvalues and eigenvectors. These quantities can be computed based on
the estimator (8), provided certain requirements on the error distribution
and on the grid are specified. In particular, it makes sense to request that
the error be equidistributed throughout the grid and that the number of
elements is minimized. This leads to a minimization problem that gives the
required definition of the metric matrices.

Preliminary results concerning the proposed technique are presented in
ref. [22] on academic test cases.

30

4. CONCLUSIONS

In this document, we have summarized the research conducted to date on
anisotropic adaption using unstructured finite elements, under the support
of the European Research Office of the U.S. Army. This work was focused in
two main areas: the development of anisotropic mesh adaption procedures
and the problem of a-posteriori error estimation. These two points are also
reflected in the two tasks (1.1 and 1.2) of the present contract, which read:

e Task 1.1: Analysis and development of anisotropic error estimation
procedures.

e Task 1.2: Analysis and development of anisotropic mesh refinement
strategies.

The delivarable for this part of the work stated:

Delivarable (12 month milestone): technical document re-
porting on the results of the research in the field of anisotropic
error estimation and mesh adaption, suitable for rotorcraft
problems. The document will also detail the results gath-
ered during preliminary testing and implementation of the
methods, with the goal of determining their suitability for
the application to full scale hovering rotorcraft problems.

Regarding the first area of investigation, we have here presented a pro-
cedure for the insertion of anisotropic tetrahedral grid layers in the interior
and in the proximity of the boundary of curved three-dimensional domains.
The present approach has some strenghts and some weaknesses, as probably
most methods do.

Among the strong points, we can mention here that it allows to generate
locally adapted anisotropic meshes with excellent control of the grid quality.
In particular, since the anisotropic layers are “almost” structured in nature,
the stretched elements are denoted by dihedral angles which are either very
small or very close to ninety degrees. Theoretical results show that large
dihedral angles affect the discretization error and the conditioning of the
discrete problem, and should therefore be avoided. It should be noted that
other anisotropic refinement procedures, such as some form of point insertion
based on local anisotropic metrics [5], can not guarantee the control of large
dihedral angles and in fact in general will produce very poor grids with
respect to this quality measure.

The present method allows to use any existing mesh generator for produc-
ing the isotropic grid, and is not limited to advancing front methods as in
the advancing layers procedure. Furthermore, the method does not require
a complex post-processing to check and fix cross-overs and self-intersections.
The software procedures are integrated with a solid modeler, that provides
the required geometric and topological information.

On the other hand, it is also clear that, by its very design, the present
approach is only suited to the refinement of one-dimensional anisotropic

31

features, i.e. for solution features that are characterized by a single local di-
rection of high gradients, as it is the case of boundary layers and shocks. The
generalization of the ideas here reported to also support the refinement of
two-dimensional features, such as vortices, leads to very complicated mesh-
ing processes which are probably difficult to justify for practical applications.
In this sense, it seems that a better approach would be to complement the
present procedures with a metric-based insertion method to be used when
and where the layer insertion method here proposed can not be profitably
used. We are indeed already working in this direction, in order to expand
the applicability of the present software to handle these more general cases.

The method here proposed seems well suited for the analysis of hovering
rotors, with the limitations noted above. The method is ideally suited to
the growth of boundary layers for Navier-Stokes simulations, both around
the blades and the fuselage. For the refinement of certain internal solution
features, as for example in the analysis of the acoustic pressure field for
hovering rotors, as shown in figure 29, the region of localization is also well
suited to the application of the present procedure. However, we remark
once again that a greater flexibility would be obtained by adding to this
existing capability the possibility of refining by metric-based point insertion,
for example in the wake and tip-vortex regions. Future work will in fact
concentrate the research in this specific direction.

Regarding the area of a-posteriori error estimation, we have reported on
a generalization of the ZZ patch-recovery technique to the case of the Euler
and Navier-Stokes equations. This method performs extremely well on reg-
ular meshes, but can also be used with success on the irregular meshes that
characterize realistic unstructured applications. Furthermore, the method in
its present implementation is very robust, cheap to compute and paralleliz-
able with great efficiency being local in nature. In this sense, this method
seems to offer a mature methodology for the estimation of the error asso-
ciated with finite element solutions of complex, large scale problems. This
allows to avoid the use of gradient norms for driving the adaption process,
that, providing no information on the finite element error but simply track-
ing regions of high solution variation, can not be fully automated. We have
tested with success the procedure on a number of examples, and we were
able to include it in the parallel adaptive code with no particular difficulty.
Furthermore, is has been experimentally observed that the method behaves
well even in the presence of discontinuities, which is the typical case of Euler
shocks. While the mathematical theory behind this recovery-based estima-
tor will clearly not hold in this case, the procedure is still able to identify
the regions that need to be better resolved.

Although the ZZ method has a number of useful characteristics, it was
here noted that it does not provide per-se information for constructing metric
fields defined on the computational domain to be used for driving anisotropic
adaption processes. To overcome this limitation, we have proposed to resort
to interpolation estimates that include the information on the anisotropy of

32

the solution as well as the anisotropy of the computational grid. With the use
of such estimates, one obtains a definition of a local metric that can be used
in an iterative fashion to obtain an anisotropically adapted locally optimal
mesh. Unfortunately, such estimates are prohibitively expensive to compute
for realistic non-linear non-self adjoint large scale applications, like the ones
that are relevant to this research project. To overcome this difficulty, we
have proposed to exploit the sinergy between the anisotropic estimates and
the ZZ recovery technique. This way, one can compute an approximation
to the local error appearing in the anisotropic estimates using the robust
and cheap ZZ method, making the anisotropic information readily available
for use in a fully automated adaption process. So far we have analyzed this
approach from a mathematical point of view and we have numerically tested
it on academic examples. The results so obtained are very promising and
encourage to continue the work in this direction towards the generalization
of these ideas to the compressible Euler and Navier-Stokes equations. At
present we do no have results to corroborate these preliminary findings, but
we intend to pursue the research in this direction in order to clarify the
suitability of the aproach for applications of engineering interest.

Comparing the proposed tasks and milestone with the achieved results,
we can say that we have analyzed and tested the methods here proposed
on meaningful examples, and we have already implemented all the most
mature procedures in the parallel-adaptive rotor code. This part of the work
would have been tasks 2.1 and 2.2 of a possible second year continuation
of this contract, according to the original proposal. Parts which are less
mature, and in particular the anisotropic estimators, are beeing analyzed
using simpler research codes.

The results of this research activity have been reported in the following
scientific publications:

e Bottasso, C.L., Detomi, D. (2002) A procedure for tetrahedral bound-
ary layer mesh generation. Engineering with Computers, accepted,
to appear. :

e Micheletti, S., Perotto, S. (2001) An anisotropic recovery-based a-
posteriori error estimator. Proccedings of ENUMATH 2001, Euro-
pean Conference on Numerical Mathematics and Advanced Appli-
cations.

e Bottasso, C.L., Detomi, D. (2002) Procedures for the refinement
and generation of anisotropic tetrahedral grids in three-dimensional
domains. SIMAI 2002, Chia, CA, Italy, May 27-31, 2002.

e Bottasso, C.L., Detomi, D. (2002) Tetrahedral boundary layer mesh
generation for viscous flows in complex geometries. XVI Congresso
Nazionale AIDAA, Palermo, Italy, September 24-28, 2001.

e Bottasso, C.L. Detomi, D. (2002) Generation and refinement of
anisotropic tetrahedral and hybrid grids in three dimensions. ANIS-
GRID 2002, Politecnico di Milano, Italy, June 21, 2002.

33

e Formaggia, L., Micheletti, S. (2002) An anisotropic framework for
error estimates in FEM. ANISGRID 2002, Politecnico di Milano,
Italy, June 21, 2002.
e Bottasso, C.L., Detomi, D. (2002) Insertion of anisotropic layers in
three-dimensional tetrahedral grids. In preparation for submission.
Finally, we remark that in June 2002 we have organized a one-day work-
shop at the Politecnico di Milano on the topic of anisotropic grids:
ANISGRID 2002. Anisotropic Grids: Generation, Adap-
tion and Error Estimation. Organizers: C.L. Bottasso, S.
Micheletti, S. Perotto, R. Sacco. Politecnico di Milano, Mi-
lano, Italy, June 21, 2002.
Speakers and participants were from the European academic and industrial
worlds. This initiative, although not directly financed by this research con-
tract, was made possible by the research activity described herein and was
directly inspired by it.

34

REFERENCES

[1] Ainsworth, M., Oden, J.T. (2001) A posteriori error estimation in finite element
analysis. John Wiley & Sons, Inc.

[2] Babuska, I., Aziz, A.K. (1976) On the angle condition in the finite element method.
SIAM Journal on Numerical Analysis, 13, 214-226.

[3] Batina, J.T. (1989) Unsteady Euler airfoil solution using unstructured dynamic
meshes. ATAA Paper No. 89-0115, AIAA 27th Aerospace Sciences Meeting, Reno,
Nevada, USA.

[4] Beall, M.W., Shephard, M.S. (1997) A general topology-based mesh data structure.
International Journal for Numerical Methods in Engineering, 40, 1573-1596.

[5] Borouchaki, H., George, P.L. (1997) Delaunay mesh generation governed by metric
specification. Part I. Algorithms. Finite Elements in Analysis and Design, 25, 85-109.

[6] Bottasso, C.L., Detomi, D. (2002) A procedure for tetrahedral boundary layer mesh
generation. Engineering with Computers, accepted, to appear.

[7] Bottasso, C.L., Detomi, D. (2002) Insertion of anisotropic layers in three-dimensional
tetrahedral grids. In preparation for submission.

[8] Bottasso, C.L., Shephard, M.S. (2000) Finite element adaptive multigrid euler solver
for rotary wing aerodynamics. AIAA Journal, 38, 50-56.

[9] Bottasso, C.L., Shephard, M.S. (1997) A parallel adaptive finite element euler flow
solver for rotary wing aerodynamics. AIAA Journal, 35, 937-944. _

[10] Connell, S.D., Braaten, M.E. (1995) Semistructured mesh generation for three-
dimensional Navier-Stokes calculation. AIAA Journal, 33, 1017-1024.

[11] De Cougny, H.L., Shephard, M.S. (1995) Parallel mesh adaptation by local mesh mod-
ification. Scientific Report 21-95, Scientific Computation Research Center, Rensselaer
Polytechnic Institute, Troy, NY.

[12] Farhat, C., Degand, C., Koobus, B., Lesoinne, M. (1998) An improved method of
spring analogy for dynamic unstructured fluid meshes. ATAA Paper No. 98-2070,
AIAA 39th Structures, Structural Dynamics, and Materials Conference, Long Beach,
CA, USA.

[13] Farhat, C., Lesoinne, M. (1993) Automatic partitioning of unstructured meshes for
the parallel solution of problems in computational mechanics. International Journal
for Numerical Methods in Engineering, 36, 745-764.

[14] Field, D.A. (1988) Laplacian smoothing and Delaunay triangulations. Communica-
tions in Numerical Methods in Engineering, 4, 709-712.

[15] Garimella, R.V., Shephard, M.S. (2000) Boundary layer mesh generation for viscous
flow simulations. International Journal for Numerical Methods in Engineering, 49,
193-218.

[16] George, P.L., Borouchaki, H. (1998) Delaunay triangulation and meshing — Applica-
tion to finite elements. Editions Hermes, Paris.

[17] Kallinderis, Y., Khawaja, A., Mc Morris, H. (1996) Hybrid prismatic tetrahedral grid
generation for viscous flows around complex geometries. ATAA Journal, 34, 291-298.

[18] Kallinderis, Y., Ward, S. (1993) Prismatic grid generation for three-dimensional com-
plex geometries. ATAA Journal, 31, 1850-1856.

[19] Krizek, M., Neittaanmaki, P. (1987) On a global superconvergence of the gradient of
linear triangular elements. Journal of Computational and Applied Mathematics, 18,
221-233.

[20] Li, X., Shephard, M.S., Beall, M.W. (2001) Accounting for curved domains in mesh
refinement. VI US National Congress on Computational Mechanics, Dearborn, MI,
USA.

[21] Léner, R. (1995) Matching semi-structured and unstructured grids for Navier-Stokes
computations. AIAA-93-3348-CP.

o

. 35

[22] Micheletti, S., Perotto, S. (2001) An anisotropic recovery-based a-posteriori error es-
timator. Proccedings of ENUMATH 2001, European Conference on Numerical Math-
ematics and Advanced Applications.

[23] Mc Morris, H., Kallinderis, Y. (1997) Octree-advancing front method for generation
of unstructured surface and volume meshes. AIAA Journal, 35, 976-984.

[24] Rodriguez, R. (1994) Some remarks on the Zienkiewicz-Zhu estimator. Numerical
Methods for Partial Differential Equations, 10, 625-635.

[25] Schroeder, W.J., Shephard, M.S. (1991) On rigorous conditions for automatically
generated finite element meshes. In Turner, J., Pegna, J., Wozny, M., editors, Product
Modeling for Computer Aided Design and Manufacturing, North-Holland, 267-281.

[26] Shakib, F., Hughes, T.J.R., Johan, Z. (1991) A new finite element formulation for
computational fluid dynamics: X. The compressible Euler and Navier Stokes Equa-
tions. Computer Methods in Applied Mechanics and Engineering, 89, 141-219.

[27] Verfiirth, R. (1996) A review of a posteriori error estimation and adaptive mesh-
refinement techniques. Wiley-Teubner, Chichester-Stuttgart.

[28] Zienkiewicz, O.C., Wu, J. (1994) Automatic directional refinement in adaptive analy-
sis of compressible flows. International Journal for Numerical Methods in Engineering,
37, 2189-2210.

[29] Zienkiewicz, O.C., Zhu, J.Z. (1992) The superconvergent patch recovery and a-
posteriori error estimates. Part I: the recovery technique. International Journal for
Numerical Methods in Engineering, 33, 1331-1364.

[30] Zienkiewicz, O.C., Zhu, J.Z. (1992) The superconvergent patch recovery and a-
posteriori error estimates. Part II: error estimates and adaptivity. International Jour-
nal for Numerical Methods in Engineering, 33, 1365-1382.

36

FIGURES

FiGURE 1. Edge collapsing in three dimensions.

1)

2)

3)

4)

FIGURE 2. Anisotropic adaption by mesh cutting, opening
and filling. Top: original mesh and trace of the surface. Mid-
dle: mesh after the cut and the local optimization. Bottom:

final adapted grid.

37

38

FIGURE 3. Automatic curving of growth curves through
mesh relaxation in the boundary layer region.

39

Growth of a boundary layer mesh in a sharp cor-

.

FIGURE 4

ner region.

40

FIGURE 5. Prism splitting templates and their symbolical
representation through the orientation of face edges.

FIGURE 6. Consistent prism splitting algorithm.

41

42

FIGURE 7. Additional linear springs connecting each vertex
with the opposite face in a tetrahedron.

43

FIGURE 8. Construction of a line ordering in an unstructured
mesh using the “onion leaves” greedy algorithm.

44

Y.
"ﬁ

s
5‘;%

£

27
AVA
7
‘Yavi
]
I

K7
7

il \4 %E { %
m "gvé’::’ ﬂ"ﬁd\) ’ Qp \‘:.1 p“s’ 7 \\,

TAVA
CLf

%

)

]

ﬂ'/ﬂl

2y

’;7)@ .W ; n’ 5 aa,“?ﬁigk N 2
Pasia rH ‘% y
‘vi ’i) ‘ LY \ /j
. \\ AN \\/\l/\

FIGURE 9. Ordering for the mesh of a two-dimensional sub-
marine model.

45

FIGURE 10. At left, centroid of concave region yields invalid
mesh. At right, centroid of “regularized” region yields valid
mesh.

46

FIGURE 11. Boundary layer ending at a model edge.

47

FIGURE 12. Boundary layer ending at a model face.

48

T

)

FIGURE 13. Internal layer ending within the domain, i.e.
without intersecting a model boundary.

FIGURE 14. Boundary layer spillover. a) Required growth
directions without spillover; b) patch of mesh faces that will
be detached from the model; c) detachment and creation of
boundary layer with spillover.

49

50

o~ -
-, .
"--—.._.._--’

FIGURE 15. Classification against model entities of the
newly created mesh entities.

FIGURE 16. Boundary layer mesh grown around an engine
nacelle model. Parts of the anisotropic grid were deleted
for exposing the through-the-thickness discretization and the
original model face triangulation.

51

44444

52

148857
146533

<85 85-95 95-105 105-115 115-125 125-135 135-145 145-155 155-165 >165

FIGURE 17. Histogram of the maximum dihedral angles for
each element of the initial (thin lines) and final (thick lines)
meshes of the nacelle model.

10
<85

120340

85-95 95-105 105-115 115-125 125-135 135-145 145-155 155-165 >165

FIGURE 18. Histogram of the maximum dihedral angles for
the anisotropic part of the adapted grid.

53

54

83020

<2 2-4 4-6 6-10 10-20 20-40 > 40

FIGURE 19. Histogram of the ratio of the radii of the in-
scribed and circumscribed spheres for the anisotropic part of
the adapted grid.

FIGURE 20. Boundary layer mesh grown around a submarine
model. Parts of the anisotropic grid were deleted for expos-
ing the through-the-thickness discretization and the original
model face triangulation.

55

56

ils of a boundary layer mesh grown around

ine model

FIGURE 21. Deta
a submar

181763

34 40

<85 85-95 95-105 105-115 115-125 125-135 135-145 145-155 155-165 >165

FIGURE 22. Histogram of the maximum dihedral angles for
each element of the initial (thin lines) and final (thick lines)
meshes of the submarine model.

57

58

FIGURE 23. Insertion of a thin internal layer in front of a sphere.

FIGURE 24. Insertion of a thin internal layer in front of a
sphere. Elements in the isotropic grid were stripped away in
order to show the anisotropic mesh.

59

60

FIGURE 25. True (left) and ZZ estimated (right) errors for
the oblique shock problem.

61

N
X P A
X/ N \NNNNNNT
OO0
s
A A
NANANAAALNAT

FIGURE 26. Adapted grid after two refinements for the
oblique shock problem.

FIGURE 27. ZZ estimated error for the Onera M6 wing problem.

FIGURE 28. Adapted grid after two refinements for the On-

era M6 wing problem.

63

¥

N2
S0

VAN

W
NAVAV,S,
A

2
<
5

<
4

NS
NavaVs
K

A
o
NS00

SAY, %

ATAVAN
NS A

KSR
N

FIGURE 29. View of an isotropically refined mesh for a high
speed impusive noise computation.

